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SCOPS requirements

Main performances goal

• To supply future UDSM ASIC & FPGA (Low
voltage High current)

• Power DCDC converter control for low output
voltage (≥ 0.6V), high current (≤ 200A)

• Current sharing (parallel operation) up to 10
converters

• 250 kHz to 3 MHz

• Radiation hardened : no SEL, no SEFI, no
SET, no SEU and TID 100krad

• Chip size 6mm x 5mm

• SMD package of BGA 81, 1mm pitch
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1. INTRODUCTION – DECENTRALIZED CONTROL CONCEPT 
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Fault tolerant & full operational Power Supply

Fully scalable Auto-reconfiguration

(Fault-tolerant)

No supervisor required

Main blocks as priority

By-pass
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2. MODELING – IMPLEMENTATION OF PROPOSED APPROACH

#1 – Interleaved Carrier Generation (CG) Block

Principle of auto-interleaved Carrier Generation How does it works ?

A chain of Inter-ASIC communications.

Each ASIC exchanges information with its close neighbors
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ΔVdiff

SRd

TslopeTlev

❑ We need to place each carrier rigorously at the center of next and

previous carriers. So we need sure that:

Generation of a relative position error signal
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2. MODELING – IMPLEMENTATION OF PROPOSED APPROACH

#1 – Interleaved Carrier Generation (CG) Block

Implementation : a 2-inputs PLL circuit Low-pass filter and stability concerns

Generation of an relative position error signal

2I-PLL overview for local k-th module example. 

(a) PD block. (b) PAC block

Control block diagram of a single-loop representing one LC elements.
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2. MODELING – IMPLEMENTATION OF PROPOSED APPROACH

#1 – Interleaved Carrier Generation (CG) Block

Corrector design and modal response Modal response

Modal response with a simple 

proportional for C(s)

Modal response with C(s)
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2. MODELING – IMPLEMENTATION OF PROPOSED APPROACH

#1 – Interleaved Carrier Generation (CG) Block

Experimental results

Experimental results. (a) Set-up overview. 

(b) Proof-of-concept board with 6 local 

controller boards and shared functions.
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2. MODELING – IMPLEMENTATION OF PROPOSED APPROACH

#2 – Adaptive Voltage Positioning (AVP) Block

Decentralized AVP Principle

❑ Each module determines its own duty-cycle

❑ A drop control method is used

𝑣𝑟𝑒𝑓𝑖

Output characteristic (load-line or droop or drop)

❑ Mismatches between modules must be considered

❑ Resulting in unbalanced currents

Local voltage reference Drop control
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2. MODELING – IMPLEMENTATION OF PROPOSED APPROACH

#3 – Current-sharing (CS) Block

Phase current balacingPrinciple of Current-sharing

With Current-sharing (CS) 

Using the current-sharing function, a

focal point is obtained.

(𝐼𝐿1 = 𝐼𝐿𝑖=…=𝐼𝐿𝑁)

!
Sensitive to Rdrop mismatches

α can be affected from

sensor mismatchesα1𝑅𝑑𝑟𝑜𝑜𝑝1

α𝑖𝑅𝑑𝑟𝑜𝑜𝑝𝑖

α𝑁𝑅𝑑𝑟𝑜𝑜𝑝𝑁

Without Current-sharing (CS) 

❑ The CS function is decentralized.

❑ CS functions balance the phase currents by adjusting the relative

position of the characteristics.

❑ Thanks to the ring communication, it becomes easy to remove a

module from the chain.

Closed-loop time

response
Tuned to 

guarantee system 

stability



3. DISCUSSIONS – ANALYSIS AND SIMULATION RESULTS

#Design and Stability Analysis

Controller Designs
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𝑍𝑉1 𝑠 = 𝑅𝑉1, and

𝑍𝑉2 𝑠 = 𝑅𝑉2 +
1

𝑠𝐶𝑉2

❑ A high ωci can simplify the buck converter from a 2nd-order system to a

1st-order system (i.e., the inductor becomes a voltage-controlled current

source).

High ωci

2nd

Order 

1st

Order 
ESR 

Effect

HF

❑ Frequency relationship and Guidelines. Make sure to

𝜔𝑠𝑤>> 𝜔𝑐𝑇𝑖>> 𝜔𝑐𝑇2

𝜔𝑐𝑇𝑖 = 0.33𝜔𝑠𝑤 and 𝜔𝑐𝑇𝑣 = 0.1𝜔𝑠𝑤
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Expected open-loop transfer function



3. DISCUSSIONS – ANALYSIS AND SIMULATION RESULTS
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# Simulation results (Frequency-domain) 
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❑ Impact of N in the current loop (Inner loop)

Note: 

❑ There is no change in current loop 

bandwidth 

❑ 𝑓𝑛
𝑁 variation is lower than 𝑓𝜏 with N 

variation

❑ 𝑓𝑛
𝑁 and 𝑓𝜏 change as long as 𝑁 and 
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3. DISCUSSIONS – ANALYSIS AND SIMULATION RESULTS
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# Simulation results (Frequency-domain) 

❑ Impact of N in the voltage loop (Outer-loop)

4=N

If 𝐶𝑜 value is normalized as 𝐶𝑜
′ = 𝐶𝑜/𝑁 in 

one-module there is no change in HF
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3. DISCUSSIONS – ANALYSIS AND SIMULATION RESULTS

# Simulation results (Time-domain) 
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3. DISCUSSIONS – ANALYSIS AND SIMULATION RESULTS

# Simulation results (Time-domain) 

❑ Steady State Result ❑ Load Transient Result
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3. DISCUSSIONS – ANALYSIS AND SIMULATION RESULTS

# Simulation results (Time-domain) 

❑ CG Block simulation with reconfiguration test

Experimental setup. (a) Start-up (b) Reconfiguration from 4 to 3 phases (c) Reconfiguration from 3 to 4 phases
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3. ANALOG BEHAVIORAL MODELING AND IMPLEMENTATION

25A load step

per phase [A]

idle

output

voltage [V]

soft ramp

automatic current balancing

0-100A

load step

phase loss and

reconfiguration
phase

reinsertion

Simulation example for a 4-controller 100 Amperes configuration

mismatch injection all along the benchmark

✓ Prior to the ASIC design phase, a detailed model was developed at sub-block level which allowed :

• the validation of the system architecture down to individual functions

• the debugging and correction of some design hypothesis

ASIC top architecture
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4. ASIC HARDENING FOR SPACE 

❑ the digital control functions are developed using a design methodology to

guarantee the good function over the mission profile with :

✓ radiation hardened standard cells library

✓ auto corrective registers, especially the control of the analog part.

✓ lock free state machines (prevent loss of functionality due to

register upset or SEFI)

✓ system resilient to unexpected reset with a transparent reinsertion

of a circuit.

❑ At system level, mismatch and events were injected during the

simulations to harden the analog part to the right need (no excess design

nor underdesign), especially for :

✓ current sensing and sharing with other circuits.

✓ voltage sensing and adaptive voltage positioning.

✓ pulse with modulation with non overlapping outputs by design

✓ inter-circuit synchronization or standalone operation.

✓ integration of electrical constraints of large PCBs.

❑ At top level, mixed signal simulations (digital RTL code + analog at

transistor level) to guarantee the right control, connections, and generate

test patterns for industrialization.
ASIC Layout (X-Fab 180nm XH018, 5x6 mm² )
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4. CONCLUSIONS AND FUTURES WORKS
Conclusions

❑ A decentralized control concept applied to a multiphase interleaved synchronous buck converter suitable for power management in satellites

systems has been presented.

❑ Three main features of each local ASIC: i) the self-interleaved carriers/PWM signals, ii) Local AVP voltage regulation, iii) and local the

current-sharing capability.

❑ Possibility to improve system functional safety thanks to:

❑ Modularity and Scalability

❑ Fault-tolerance and auto-reconfiguration capability (operation with N-1 active phases is guaranteed under a faulty condition).

❑ Local controllers connected in a circular chain of communications.

❑ The proposed method and theoretical expectations are validated by SPICE simulations and lab. prototypes,
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