

A Scalable Controller for Power Sources (SCOPS)

Date: June 16, 2025

Speaker: Marc Cousineau

The work is part of the European project SCOPS involving satellite manufacturer teams as well as scientific partners. Grant agreement No 101082266.

SCOPS

SCALABLE CONTROLLER FOR POWER SOURCES

Coordinator & project manager Architecture / ASIC Design Radiation & End-user tests

Architecture, Know-how & Patents

embracing a better life DARE180XH library, X-FAB foundry

Design & Test validation

Fully Scalable
Microprocessor Power
Supply

Prototype manufacturing

SCOPS requirements

Main performances goal

- To supply future UDSM ASIC & FPGA (Low voltage High current)
- Power DCDC converter control for low output voltage (≥ 0.6V), high current (≤ 200A)
- Current sharing (parallel operation) up to 10 converters
- 250 kHz to 3 MHz
- Radiation hardened : no SEL, no SEFI, no SET, no SEU and TID 100krad
- Chip size 6mm x 5mm
- SMD package of BGA 81, 1mm pitch

1. INTRODUCTION – DECENTRALIZED CONTROL CONCEPT

Fault tolerant & full operational Power Supply

Fully scalable

No supervisor required

Auto-reconfiguration (Fault-tolerant)

#1 – Interleaved Carrier Generation (CG) Block

Principle of auto-interleaved Carrier Generation

$$\phi_{\Delta t} = \underbrace{\phi_{i+1}}_{\text{next}} - \phi_i = \phi_i - \underbrace{\phi_{i-1}}_{\text{prev.}} = \frac{2\pi}{N}$$

☐ We need to place each carrier rigorously at the center of next and previous carriers. So we need sure that:

A chain of Inter-ASIC communications.

Each ASIC exchanges information with its close neighbors

How does it works?

Generation of a relative position error signal

#1 – Interleaved Carrier Generation (CG) Block

Implementation: a 2-inputs PLL circuit

2I-PLL overview for local k-th module example.
(a) PD block. (b) PAC block

Low-pass filter and stability concerns

Control block diagram of a single-loop representing one LC elements.

$$\tilde{\Theta}(s) = \frac{1}{2} \underbrace{\Theta_{k+1}(s)}_{\text{next}} + \frac{1}{2} \underbrace{\Theta_{k-1}(s)}_{\text{previous}}$$

$$H_e(s) = \underbrace{e^{-s.(T_0/2)}}_{H_{delay}(s)} \cdot \underbrace{\frac{1 - e^{-s.(T_0).}}{s.(T_0)}}_{H_{ZOH}(s)} \cdot \underbrace{\frac{2.I_p.T_0}{C_{rst}}}_{\text{charge pump}}$$

$$H_{VCO}(s) = \frac{1}{s} \cdot \frac{k_d}{T_0}$$

Generation of an relative position error signal

AMIC

#1 – Interleaved Carrier Generation (CG) Block

Corrector design and modal response

Modal response

Modal response with a simple proportional for C(s)

Modal response with C(s)

#1 – Interleaved Carrier Generation (CG) Block

Experimental results

Experimental results. (a) Set-up overview. (b) Proof-of-concept board with 6 local controller boards and shared functions.

#2 – Adaptive Voltage Positioning (AVP) Block

Decentralized AVP Principle

- ☐ Each module determines its own duty-cycle
- A drop control method is used

$$V_{out} = V_{ref_i} - \alpha_i.R.I_{l_i},$$

Local voltage reference

Drop control

Output characteristic (load-line or droop or drop)

- ☐ Mismatches between modules must be considered
- ☐ Resulting in unbalanced currents

AMICS

#3 – Current-sharing (CS) Block

$$e_i(t) = i_{l_i}(t) - 0.5\underbrace{(i_{l_{i+1}}(t) - i_{l_{i-1}})}_{\text{next}}; \qquad C_{\Delta_i}(s) = \underbrace{V_{\Delta_{Ii}}(s)}_{E_i(s)} = \underbrace{-K_{\Delta i}}_{\text{Closed-loop time Tuned to response guarantee system}} \underbrace{1 + \tau_{\Delta i}.s}_{\text{guarantee system}}$$

- The CS function is decentralized.
- □ CS functions balance the phase currents by adjusting the relative position of the characteristics.
- ☐ Thanks to the ring communication, it becomes easy to remove a module from the chain.

Phase current balacing

#Design and Stability Analysis

☐ A high wci can simplify the buck converter from a 2nd-order system to a 1st-order system (i.e., the inductor becomes a voltage-controlled current source).

$$R_{V1} = \frac{1}{\alpha}.\frac{\Delta V}{I_{L_{Max}}};$$

$$f_{cV} = \frac{1}{2\pi} \cdot \frac{1}{\alpha R_{V1}} \cdot \frac{N}{C_o},$$

$$f_{cI} = \frac{1}{2\pi} \cdot \frac{V_{in}}{V_p} \cdot \frac{\alpha R_{V2}}{L},$$

Expected open-loop transfer function

☐ Frequency relationship and Guidelines. Make sure to

$$\omega_{sw}>>\omega_{cTi}>>\omega_{cT2}$$
 $\omega_{cTi}=0.33\omega_{sw}$ and $\omega_{cTv}=0.1\omega_{sw}$

$$f_{cI} = \frac{1}{3} f_{sw}; \quad f_{cV} = \frac{1}{10} f_{sw};$$

Simplified circuit

Simulation results (Frequency-domain)

☐ Impact of *N* in the current loop (Inner loop)

Note:

- ☐ There is no change in current loop bandwidth
- \square f_n^N variation is lower than f_τ with N variation
- \square f_n^N and f_τ change as long as N and C_{out} changes
- ☐ Open-loop Unconditionally stable

Simulation results (Frequency-domain)

☐ Impact of *N* in the voltage loop (Outer-loop)

Design strategy 2

If C_o value is normalized as $C'_o = C_o/N$ in one-module there is no change in HF

$$f_{cV} = \frac{1}{2\pi} \cdot \frac{1}{\alpha R_{V1}} \cdot \frac{N}{N.C_o'} = \frac{1}{2\pi} \cdot \frac{1}{\alpha R_{V1}} \cdot \frac{1}{C_o'}$$

□ P(V(Vout_v)/V(vout_fb_v))-180

◆ P(V(Vout_v_N1)/V(vout_fb_v_N1))-180 ▼ -180d

Frequency

1.0Hz 10Hz

Simulation results (Time-domain)

Main specifications for simulation tests of the system.

Parameters	Value	Description
f_{sw}	250 kHz	Switching frequency
N	4	Number of Phases
I_{out}	40 - 100 A	Output current range
I_{ph}	10 - $25 A$	Phase current range
V_{out}	0.6 - $1.2~V$	Output voltage range
V_{in}	3 - $12~V$	Input voltage range
$\Delta_{V_{max}}$	$30~\mathrm{m}V$	Maximum admissible
		output voltage range
α	0.01 m	Effective current sensor sensitivity
R_{V1}	100 Ω	AVP-Controller $Z_{V1}(s)$
R_{V2}	$19.6~\mathrm{k}\Omega$	AVP-Controller $Z_{V2}(s)$
C_{V2}	50 nF	AVP-Controller $Z_{V2}(s)$
αR_{V1}	$\left(\begin{array}{c} 1 \text{ mV/A} \end{array}\right)$	AVP Slope per phase
	_	

AMICSA

Simulation results (Time-domain)

Fig. 10. Simulation result. Steady-state waveforms. (a) Output voltage. (b) Phase currents (on the top) and Output current (on the bottom).

Simulation results (Time-domain)

□ CG Block simulation with reconfiguration test

Experimental setup. (a) Start-up

(b) Reconfiguration from 4 to 3 phases

(c) Reconfiguration from 3 to 4 phases

3. ANALOG BEHAVIORAL MODELING AND IMPLEMENTATION

- ✓ Prior to the ASIC design phase, a detailed model was developed at sub-block level which allowed :
 - the validation of the system architecture down to individual functions
 - the debugging and correction of some design hypothesis

4. ASIC HARDENING FOR SPACE

- the <u>digital control</u> functions are developed using a design methodology to guarantee the good function over the mission profile with:
 - ✓ radiation hardened standard cells library
 - ✓ auto corrective registers, especially the control of the analog part.
 - ✓ lock free state machines (prevent loss of functionality due to register upset or SEFI)
 - system resilient to unexpected reset with a transparent reinsertion of a circuit.
- At system level, mismatch and events were injected during the simulations to harden the <u>analog part</u> to the right need (no excess design nor underdesign), especially for:
 - current sensing and sharing with other circuits.
 - ✓ voltage sensing and adaptive voltage positioning.
 - ✓ pulse with modulation with non overlapping outputs by design
 - √ inter-circuit synchronization or standalone operation.
 - √ integration of electrical constraints of large PCBs.
- At top level, mixed signal simulations (digital RTL code + analog at transistor level) to guarantee the right control, connections, and generate test patterns for industrialization.

ASIC Layout (X-Fab 180nm XH018, 5x6 mm²)

4. CONCLUSIONS AND FUTURES WORKS

Conclusions

- A <u>decentralized control concept</u> applied to a multiphase interleaved synchronous buck converter suitable <u>for power management in satellites</u> <u>systems</u> has been presented.
- Three main features of each local ASIC: i) the <u>self-interleaved</u> carriers/PWM signals, ii) Local <u>AVP voltage regulation</u>, iii) and local the current-sharing capability.
- Possibility to improve system functional safety thanks to:
 - Modularity and Scalability
 - ☐ Fault-tolerance and auto-reconfiguration capability (operation with N-1 active phases is guaranteed under a faulty condition).
 - □ Local controllers connected in a circular chain of communications.
- ☐ The proposed method and theoretical expectations are validated by SPICE simulations and lab. prototypes,

ACKNOWLEDGMENT

- ☐ This project has received funding from the European Union's Horizon Europe research and innovation program under grant agreement No 101082266.
- ☐ The authors acknowledge the active contribution of
 - ☐ Thales Alenia Space,
 - □ LAPLACE laboratory, Institut National Polytechnique de Toulouse
 - ☐ ISD,
 - Synergie CAD,

Toulouse),

□ and IMEC.

THANK YOU

Visit our website for more: https://scopsproject.eu/

